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Explicit formulas for the rotation frequency and the long-wave-number diffusion coefficients of global
spirals withm arms in Rayleigh-Be´nard convection are obtained. Global spirals and parallel rolls share exactly
the same Eckhaus, zigzag, and skewed-varicose instability boundaries. Global spirals seem not to have a
characteristic frequencyvm or a typical sizeRm , but their productvmRm is a constant under given experi-
mental conditions. The ratioRi /Rj of the radii of any two dislocations (Ri , Rj ) inside a multiarmed spiral is
also predicted to be constant. Some of these results have been tested by our numerical work.
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PACS number~s!: 47.54.1r, 47.20.Lz, 47.20.Bp, 47.27.Te

Global spirals andspiral defect chaos~SDC! as intrinsic
patterns have been experimentally observed recently in
Rayleigh-Bénard convection~RBC! @1–3#. These observa-
tions were rather surprising because they were carried out in
a parametric region where the familiar parallel-roll pattern
should be stable@4#. An explanation for the unexpected pres-
ence of global spirals or SDC, in place of parallel rolls, is
still to be provided. So far theoretical attempts on under-
standing these intriguing patterns have relied heavily on nu-
merical solutions of either the generalized Swift-Hohenberg
~GSH! model@5–8# or the truncated Navier-Stokes equations
governing the fluid dynamics@9#. Although these numerical
studies have reproduced experimental results qualitatively
and quantitatively, very limited theoretical insights have
been obtained. While the formation of SDC in the system has
since received considerable attention@7,9#, little effort has
been given to determining the essential properties of asingle
spiral. It is far from clear whether a global spiral has a char-
acteristic rotation frequencyvm or a typical sizeRm @10#.
The knowledge of those properties, we believe, is necessary
in order to describe the much more complicated SDC.

Recently major progress was made by Cross and Tu~CT!
in this front@8#. Applying thephase dynamicsmethod devel-
oped earlier in studying pattern formations in nonequilibrium
systems@11,12#, CT considered the dynamics of a spiral as
the balance of two competitive motions: a radial phase-
drifting of the rolls and an azimuthal climbing of the dislo-
cation @8#. CT’s results also imply thatvmRm is a constant
under given experimental conditions, but they did not give
an explicit expression forvmRm . Furthermore, CT demon-
strated qualitatively that the rotation frequencyvm of a spiral
is not directly related tomean flow, which is induced by
distortions of the convective rolls@13#, although mean flow
is necessary for the formation of the rotating spiral@5–9#.

In this paper we focus on dynamical properties ofglobal
spirals. We extend CT’s results in two respects: We first
make a one-mode approximation for spirals@14#, which
leads to an explicit expression forvmRm ; we also separate
the phase fluctuations from the stable phase-drifting and cal-
culate the phase diffusion coefficients. We test some of these
formulas by our numerical solutions. Our results make it
possible to discuss the dynamical properties of global spirals

in detail. We predict that, inside a stable multiarmed global
spiral, the ratio of the radii of two dislocations is a constant
under given experimental conditions. We also find that glo-
bal spirals, concentric rings, and parallel rolls have exactly
the same Eckhaus, zigzag, and skewed-varicose instability
boundaries. Presumably there is a competition among the
various attractors corresponding to these states, the nature of
which requires further theoretical study.

To be concrete, we base our calculations on the two-
dimensional generalized Swift-Hohenberg~GSH! model for
RBC @13#, which has been proven very successful in charac-
terizing convective patterns under quite broad conditions
@15#. Numerical solutions of the GSH model not only repro-
duce both global spirals and SDC but also resemble experi-
mental results reasonably well@5–7#. In this model, the con-
vective patterns are determined completely by anorder
parameterc~r ,t! in two-dimensional spacer , which satisfies
@13#

] tc1U–“c5@e2~¹211!2#c2gc31g3~“c!2¹2c,
~1!

whereU is the mean flow velocity given byU5“z3ez while
@13#

@] t2s~¹22c2!#¹2z5gmez•@“~¹2c!3“c#. ~2!

In the GSH equations, the reduced Rayleigh number
e52.7824eexpt, where eexpt[~Ra/Rac!21 is the control pa-
rameter@5,7#, in which Ra and Rac are the Rayleigh number
and its critical value at onset@15#. Other parametersg, g3 ,
c2, gm , and the fluid Prandtl numbers model the properties
of the system and are all non-negative. For simplicity, we
only consider Oberbeck-Boussinesq fluids here@16#.

A one-mode approximation has been used in studying spi-
rals in chemical reaction-diffusion systems@14#. We now
apply the same approximation for stable global spirals in
RBC. Using polar coordinates (r ,w), one can approximate a
global-spiral solution by@16#

c~r ,t !5 1
2 @Am~r !eium1c.c.#1O~Am

3 !, ~3!
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where um5km(r )r1mw2umuvmt, with m the number of
spiral arms near the core. In general, the amplitudeAm(r )
and the wave numberkm(r ) should depend onr . The rota-
tion frequencyvm , however, must be independent ofr for a
stable spiral. Here we adopt the following conventions:
km(r ).0, m.0 (,0) if the spiral is right~left! handed and
vm.0 ~,0! if the spiral rotates in the same~opposite! di-
rection of chirality. Experiments@1,3# showed that a multi-
armed spiral usually has dislocations at different radii.
Across each of these radii, the number of arms decreases or
increases~depending on whetherm.0 or m,0! by the
number of dislocations on the corresponding radius. For
mathematical simplicity, we denote each of these radii, for
example,Ri , by the number of nonterminating arms, sayi ,
in its inside vicinity; see Fig. 1 for am53 global spiral.
Then a multiarmed spiral with dislocations at different radii
can also be described by the above solution, provided thatm
is replaced byi for each corresponding regionRj,r<Ri .
The amplitude and the wave number should be continuous
across each boundaryr5Ri . The frequency, on the other
hand, must be a constant for all regions. Forr.R1 , only
concentric rings~a target state! exist which correspond to
i50. With this understanding, our results below can be di-
rectly extended, by replacingm with every possiblei , to
multiarmed spirals found in experiments.

Phase equation@11,12# describes slow variations of con-
vective rolls from their perfect pattern. AssumingRm@1,
i.e.,hm

2[1/Rm!1 for a global spiral, one can then introduce
slow scalesR[hm

2 r , F[w andT[hm
4 t, and aslow phase

variable Qm(R,T)[hm
2 um(r ,t)1umuvmRmT. Here the

phase fluctuationsQm(R,T) have been explicitly separated
from the stable phase-driftingumuvmRmT. A similar separa-
tion has been used in studying chemical waves with steady
velocity @15#. Now the local wave number can be defined as
@11#

qm[¹rum~r ,t !5¹RQm~R,T!5qmer1O~hm
2 !. ~4!

Inserting the spiral solution~3! into the GSH equation~1!,
one may then match the result to orderhm . Since the calcu-

lations are carried out in exactly the same way as in Ref.
@11#, we skip details here but only write down the final re-
sults. From the zeroth order ofhm , one finds that the ampli-
tude is slaved by the wave number and is given by@17#

uAmu254
e2~12qm

2 !2

3g1g3qm
4 . ~5!

From the second order ofhm , one obtains essentially the
phase equation

]TQm5umuvmRm2uAmu22
“R•@B~qm!uAmu2qm#2U8•qm

2g3qm
1/2qm•“R@qm

3/2uAmu2#, ~6!

where

B~qm!52~12qm
2 !2 3

4g3qm
2 uAmu2, ~7!

while U85“R^z&um
3ez with ^ &um

for the phase average in

um and, withgm8 5gm /c
2s,

“R
2 ^z&um

52 1
2gm8 ez•qm3“R@“R•~qmuAmu2!#. ~8!

Although one may, in principle, convert Eq.~6! into the stan-
dard form as in Ref.@11#, there is no need to do so here.

To express the phase equation in the more familiar diffu-
sion equation form, one needs to project the gradient opera-
tor “ into local coordinates. In the light of Eq.~4!, this can
be easily achieved by] i5]R and ]'5R21]F.]F ~since
R.1 for r.Rm , where the phase equation is valid!. Again
recalling Eq. ~4!, one finds immediately that“R•qm
5“R

2Qm . In Cartesian coordinates, this simply gives] i
2Qm

1]'
2Qm which contributes to the diffusion of phase fluctua-

tions. But in a polar coordinate system, an additional
R21] iQm.qm term is also present which, however, contrib-
utes to the stable phase-driftingumuvmRmT. From Eq.~6!,
one gets via thisR21] iQm.qm term that@17#

umuvmRm5qmB~qm!, ~9!

whose corrections are of orderhm
2 . Apparently this fre-

quency of rotation is generated by the curvature of convec-
tive rolls although it appears independent of mean flow. For
m50, it naturally leads to the ‘‘wave-number selection’’
q05qf with B(qf)50 @11,12#.

Further algebra reduces Eq.~6! to a phase-diffusion equa-
tion @11,18#

]TQm5D i~qm!] i
2Qm1D'~qm!]'

2Qm

1D3~qm!“R
22] i

2]'
2Qm , ~10!

in which the diffusion coefficients are@17#

D i~qm!52
1

2
qmF412qm

2

uAmu2
2g3qm

2 G d

dqm
uAmu2

2B~qm!14qm
2 , ~11!

D'~qm!52B~qm!1 1
2gm8 qm

2 uAmu2, ~12!

FIG. 1. Three-armed global spiral with dislocations atR3 , R2 ,
andR1 ~R3,R2,R1!. The three arms are represented by the solid,
dashed, and dotted lines.
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D3~qm!5
1

2
gm8 qm

3 d

dqm
uAmu2. ~13!

This diffusion equation describes three types of long-
wavelength fluctuations@11,18#: Eckhaus (D i), zigzag
(D'), and skewed varicose (Dsv) with, for D3,0,

Dsv~qm!5@~D i2D'!212~D i1D'!D31D3
2 #/4D3 .

~14!

When all these diffusion coefficients are positive, global spi-
rals are stable; but when any one of them becomes negative,
spirals lose their stability against the corresponding fluctua-
tions.

One striking feature of this diffusion equation is that all
the functionsD i , D', andDsv are independentof m. Indeed
they all agree with those of parallel rolls. This means that
global spirals, concentric rings, and parallel rolls share ex-
actly the same Eckhaus, zigzag, and skewed-varicose insta-
bility boundaries. So the fact that the measured wave num-
bers of stable spirals are inside the stable region of parallel
rolls @1# is not surprising but necessary. Considering that the
system isnonpotentialand that the only difference between
spirals of different number of arms isqm , a theoretical un-
derstanding of spiral-to-target or spiral-to-spiral transitions
could be subtle. There are, however, some shortcomings in
our analysis. The core instability@8# is omitted here. Short-
wavelength fluctuations@4,18# have also been neglected, but
these seem irrelevant in the transition between global spirals
of different value ofm @1,3#. In any event, it is clear that
further theoretical work on this issue is necessary.

We now concentrate on the rotation frequency of the glo-
bal spirals. One sees easily from Eq.~9! thatvmRmis a con-
stant under given experimental conditions. This has been im-
plied by CT @8# and verified by experiments@19# and our
numerical solutions; see Table I. The quantitative value of
vmRm apparently depends onqm . However, except for
m50, one cannot determineqmmerely from the phase equa-
tion. This problem has been emphasized by CT@8#. They
found that it is essential to take the intrinsic defect of the
spiral, i.e., the dislocation defect, into account. A spiral can
be stable only if the phase-drifting of the rolls is balanced by

the climbing of the dislocation, i.e.,vmRm5vd(qm), where
vd(qm) is the climbing velocity of the dislocation. This, to-
gether with Eq.~9!, selects the wave number for a stable
spiral. Unfortunately, an explicit analytic formula of
vd(qm) seems intractable@20#. Thus an accurate evaluation
of qm seems beyond reach.

One may still make the following approximations for
small e @8#,

umuvmRm.a~qf2qm! and vd~qm!.b~qm2qd!,
~15!

wherea,b.0 andqd is defined byvd(qd)50. For g350,
we get from Eq.~9! qf51 anda54, while forg3.0, we get
qf'12g fe anda'4(11ãe)with g f53g3/4(3g1g3) and
ã56g f1

32
3 g f

2. Similarly, one may writeqd'12gde and

b'b0(11b̃e). Under these approximations, the selected
wave number of a stable spiral is fully determined by
vmRm5vd , which gives, with gm5(4g f1umub0gd)/(4
1umub0),

qm.~aqf1umubqd!/~a1umub!'12gme. ~16!

Then, from Eq.~9!, one finds formÞ0 that

vmRm.
ab

a1umub ~qf2qd!'
4b0~g f2gd!e

41umub0
. ~17!

For a multiarmed spiral with dislocations at different radii,
since the frequency of rotation is a constant over the whole
spiral, the ratioRi /Rj5(a1u j ub)/(a1u i ub)is fixed under
given experimental conditions.@The definition ofRi andRj
is given below Eq.~3!.# This ratio depends on only two
experimentally measurable quantitiesa and b @19#, which
provides a strong test of our theory.

To test the validity of Eq.~9!, we have solved Eqs.~1!
and ~2! numerically by the same method described in Ref.
@5#, except that we set up a global spiral as the initial condi-
tion. We useg51.0,g350,s51.0,c252.0, andgm510 for
our numerical solutions. We use mesh pointsN3N5512
3512 and grid sizeDx5Dy5p/8 for aspect ratio@~radius!/
~thickness!# G532. For simplicity, we set all radii of dislo-
cations inside a multiarmed spiral to be equal. Fore50.3, a
one-armed spiral shrinks rapidly into concentric rings. But
for e50.5, one-armed, two-armed, and three-armed spirals
all stabilize with three given sizesRm/L50.45, 0.55, 0.65,
whereL532p is the radius of the cell. We then measure the
rotation frequency and, via Eq.~9!, calculate the correspond-
ing wave numberqm . The results are listed in Table I. Al-
thoughRm varies by about 50%, the productvmRm is found
to be a constant within 5%. Also from Eq.~17! and the
measured values ofvmRm, we find thatb50.7360.08 and
qd50.88060.001. In comparison, one getsqd.0.905 from a
formula in Ref. @20#. Furthermore, although global spirals
are set up with three different sizes, they are all found to be
stable within the time of our computer simulation, which
runs about 2000 vertical diffusion times for each case. So it
seems that global spirals do not have a typical size. Conse-
quently, the frequency of rotation may also be nonunique.

Finally we make a comment on the role played by mean
flow in the dynamics of spirals. Evidently Eq.~9! does not

TABLE I. Measured values ofvmRm of global spirals with
m51,2,3 from numerical solutions. Global spirals are set up with
three different sizesRm/L50.45,0.55,0.65, whereL532p is the
radius of the cell. The wave numberqm is calculated via Eq.~9!,
which is within the uncertainty of direct measurements
qm51.0060.05.

m Rm/32p vmRm qm

1 0.45 0.0750 0.981
0.55 0.0742 0.981
0.65 0.0734 0.981

2 0.45 0.0619 0.967
0.55 0.0630 0.967
0.65 0.0658 0.965

3 0.45 0.0574 0.954
0.55 0.0568 0.954
0.65 0.0556 0.955
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explicitly depend ongm . This has been first observed by CT
@8#, who hence assign a ‘‘secondary’’ role to mean flow.
Nevertheless, mean flow plays a subtle role in determining
the selected wave number~16! for stablespirals. Indeed the
value ofqf2qd in Eq. ~17! is very sensitive togm @20#. So
vmRm also has a sensitivegm dependence. Furthermore, one
must haveD'>0 for stable spirals. This, from Eqs.~12! and
~9!, gives a constraint on the allowed frequency. Forgm50,
only vmRm<0 is permitted. Now ifvmRm>0 is also nec-
essary to avoid ‘‘unwinding’’@8#, stable spirals must be sta-
tionary. Recalling Eq.~17!, a stationary spiral is possible
only if qf5qd. For g350 andgm50, the relationqf5qd
indeed holds@20# and a stationary global spiral has been
found@5#. But for more realisticg3.0, these two wave num-
bers are in general unequal. So a finitegm8 is needed to ob-
serve any stable spiral, which might suggest why a low
Prandtl number (gm8 ;1/s) is necessary in experiments
@1–3#.

In summary, we have calculated the rotation frequency

and the long-wavelength diffusion coefficients of global spi-
rals. We find that global spirals have exactly the same Eck-
haus, zigzag, and skewed-varicose instability boundaries as
parallel rolls and concentric rings. So a transition between
these patterns presumably involves a competition among
their various attractors. Although global spirals seem not to
have a characteristic frequency or a typical size, the product
of them is a constant under given experimental conditions.
The ratio of the radii of any two dislocations inside a multi-
armed spiral is also predicted to be constant. Some of these
results have been tested by our numerical solutions. Never-
theless, to fully understand the intriguing global-spiral pat-
tern, an analysis of the core instability and a theory describ-
ing the spiral-to-target transition will be necessary.
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