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Dynamical properties of multiarmed global spirals in Rayleigh-Banard convection
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Explicit formulas for the rotation frequency and the long-wave-number diffusion coefficients of global
spirals withm arms in Rayleigh-Beard convection are obtained. Global spirals and parallel rolls share exactly
the same Eckhaus, zigzag, and skewed-varicose instability boundaries. Global spirals seem not to have a
characteristic frequency,, or a typical sizeR,, but their productw,R,, is a constant under given experi-
mental conditions. The ratig;/R; of the radii of any two dislocationsR;, R;) inside a multiarmed spiral is
also predicted to be constant. Some of these results have been tested by our numerical work.
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PACS numbe(s): 47.54:+r, 47.20.Lz, 47.20.Bp, 47.27.Te

Global spirals andpiral defect chao$SDC) as intrinsic  in detail. We predict that, inside a stable multiarmed global
patterns have been experimentally observed recently ispiral, the ratio of the radii of two dislocations is a constant
Rayleigh-B@ard convectionRBC) [1-3]. These observa- under given experimental conditions. We also find that glo-
tions were rather surprising because they were carried out iBal spirals, concentric rings, and parallel rolls have exactly
a parametric region where the familiar parallel-roll patternthe same Eckhaus, zigzag, and skewed-varicose instability
should be stablp4]. An explanation for the unexpected pres- boundaries. Presumably there is a competition among the
ence of global spirals or SDC, in place of parallel rolls, isvar_ious attractors corresponding to these states, the nature of
still to be provided. So far theoretical attempts on underWhich requires further theoretical study.
standing these intriguing patterns have relied heavily on nu- T0 be concrete, we base our calculations on the two-
merical solutions of either the generalized Swift-Hohenberglimensional generalized Swift-Hohenbe@SH) model for
(GSH) model[5-8] or the truncated Navier-Stokes equationsRBC [13], which has been proven very successful in charac-
governing the fluid dynamicf9]. Although these numerical terizing convective patterns under quite broad conditions
studies have reproduced experimental results qualitativell5]- Numerical solutions of the GSH model not only repro--
and quantitatively, very limited theoretical insights haveduce both global spirals and SDC but also resemble experi-
been obtained. While the formation of SDC in the system haghental results reasonably we—7]. In this model, the con-
since received considerable attentigh], little effort has ~ Vective patterns are determined completely by amder
been given to determining the essential propertiessifigle ~ Parametery(r t) in two-dimensional space which satisfies
spiral. It is far from clear whether a global spiral has a char{13l
acteristic rotation frequency,, or a typical sizeR,, [10].

The knowledge of those properties, we believe, is necessary d,¢+U-Vy=[e—(V2+1)2]y— g+ g3(V ) 2V2y,
in order to describe the much more complicated SDC. (]

Recently major progress was made by Cross an¢CIlj
in this front[8]. Applying thephase dynamicsiethod devel- whereU is the mean flow velocity given by=V/xe, while
oped earlier in studying pattern formations in nonequilibrium[13]
systemg 11,12, CT considered the dynamics of a spiral as
the balance of two competitive motions: a radial phase- [6,— (V2= C) V2 =0me, [V(VZP) X V). (2)
drifting of the rolls and an azimuthal climbing of the dislo-
cation[8]. CT’s results also imply thab R, is a constant
under given experimental conditions, but they did not give
an explicit expression fow,R,,. Furthermore, CT demon-
strated qualitatively that the rotation frequengy; of a spiral
is not directly related tanean flow which is induced by
distortions of the convective rollsl3], although mean flow

is necessary for the formation of the rotating spi&t9]. ; i . ;
In this paper we focus on dynamical propertieggtibal only consider Oberbeck-Boussinesq fluids hi@).

spirals. We extend CT’s results in two respects: We first A_one-mod_e approximation hgs been used in studying spi-
o . ; rals in chemical reaction-diffusion systerhs4]. We now
make a one-mode approximation for spirdlsd], which

leads to an explicit expression far, R ; we also separate apply the same approximation for stable global spirals in

the phase fluctuations from the stable phase-drifting and Car-\)lggéliswgl zgllit[iggot:;j[llngt% {¢), one can approximate a
culate the phase diffusion coefficients. We test some of thes® P
formulas by our numerical solutions. Our results make it

possible to discuss the dynamical properties of global spirals W(r,)=3[An(r)e'mtc.c]+O(A}), 3

In the GSH equations, the reduced Rayleigh number
€=2.782%,,,, where ,,=(Ra/Ra)—1 is the control pa-
rameter[5,7], in which Ra and Raare the Rayleigh number
and its critical value at ons¢5]. Other parameterg, gs,

c?, gy, and the fluid Prandtl number model the properties

of the system and are all non-negative. For simplicity, we
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lations are carried out in exactly the same way as in Ref.
[11], we skip details here but only write down the final re-
sults. From the zeroth order af,,, one finds that the ampli-
tude is slaved by the wave number and is giver{ b

252
2_ 6_(1_qm)
Al =4 3 g ©

From the second order of,,,, one obtains essentially the
phase equation

5T®m= |m| mem_ |Am| 72VR' [B(qm)|Am|2qm] -u'- Om

— 930220 VRLGZA Anl2], (6)
where
B(dm) =2(1—0%) — 59395/ Anl?, @)

FIG. 1. Three-armed global spiral with dislocationsRat, R,,

andR; (R3<R2<R1)._The three arms are represented by the solidwhile U’ =Vg({) amxez with ( >€m for the phase average in
dashed, and dotted lines. 8, and, withg/,= g,n/c%o,

where 0,=Kn(r)r+ me—|m|ot, with m the number of 2(0)
spiral arms near the core. In general, the amplitAggr) 0
and the wave numbék,,(r) should depend on. The rota- L .
tion frequencyw,,, however, must be independentrofor a Although one may, in principle, convert E@) into the stan-
stable spiral. Here we adopt the following conventions:dard form as in Refl11], there is no need to do so here.
k.(r)>0, m>0 (<0) if the spiral is rightleft) handed and . To express the phase equation in 'ghe more famlllar diffu-
oy >0 (<0) if the spiral rotates in the samepposité di- sion equation form, one needs to project the gradl'ent opera-
rection of chirality. Experimentgl,3] showed that a multi- tor V |n_to Ioca_l coordinates. In the light _OI E¢), thls_can
armed spiral usually has dislocations at different radii.0€ €asily achieved by,=dg and d, =R"“de,=dy (Since
Across each of these radii, the number of arms decreases Br=1 for r=Rm, where the phase equation is valigain
increases(depending on whethem>0 or m<0) by the recallmg Eq. (4), one finds immediately thatVg-qn
number of dislocations on the corresponding radius. FOI"_VRG) In Cartesian coordinates, this simply givéf® p,
mathematical simplicity, we denote each of these radii, for 7 ©m Which contributes to the diffusion of phase fluctua-
example,R;, by the number of nonterminating arms, say tlons But in a polar coordinate system, an additional
in its inside vicinity; see Fig. 1 for an=3 global spiral. R 9,0 ,=0dy term is also present which, however, contrib-
Then a multiarmed spiral with dislocations at different radii utes to the stable phase drifting| R, T. From Eq.(6),
can also be described by the above solution, providedithat one gets via thiR 9,0 ,=q,,, term that[17]
is replaced byl for each corresponding regidR; <r<R;.
The amplitude and the wave number should be continuous |M|wmRm=0amB(Am), C)
across each boundary=R;. The frequency, on the other
hand, must be a constant for all regions. FofR;, only ~ Whose corrections are of ordeys. Apparently this fre-
concentric rings(a target stateexist which correspond to quency of rotation is generated by the curvature of convec-
i=0. With this understanding, our results below can be diive rolls although it appears independent of mean flow. For
rectly extended, by replacingy with every possiblei, to  m=0, it naturally leads to the “wave-number selection”
multiarmed spirals found in experiments. do=dy With B(q)=0 [11,12.

Phase equatiofil1,17 describes slow variations of con-  Further algebra reduces E@) to a phase-diffusion equa-
vective rolls from their perfect pattern. Assumifgy,>1, tion[11,1§
ie., nfnz 1/R,<1 for a global spiral, one can then introduce
slow scalesR=72r, ®=¢ andT=7+t, and aslow phase 910 m=D(Um) 97O 1+ D, (4my) 75 O
variable m(R,T)Enﬁqem(r,t)+|m|memT: _Here the + D (Qm) VR2252 O, (10)
phase fluctuation® ,(R,T) have been explicitly separated
from the stable phase-driftingn| wy,RmT. A similar separa- i which the diffusion coefficients afd.7]
tion has been used in studying chemical waves with steady
velocity [15]. Now the local wave number can be defined as

= — 305 UnX Ve[ Ve (GulAnl®)]. (8

1-q;
[11] DII(Qm) 2qm |A |21 g3qm}dq |Am|2
An=V:On(1,1) = VRO (R, T) =&+ O( 7). (4) —B(qy) + 402, 11

Inserting the spiral solutiofi3) into the GSH equatioril), 5
one may then match the result to ordgy. Since the calcu- D, (Um) =~ B(dm) + 39m Al Aml%, (12
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TABLE I. Measured values obv,R,, of global spirals with  the climbing of the dislocation, i.ew,Rn=v4(dy), Where
m=1,2,3 from numerical solutions. Global spirals are set up withvd(qm) is the climbing velocity of the dislocation. This, to-
three different sizeRR,,/L=0.45,0.55,0.65, wheré =327 is the gether with Eq.(9), selects the wave number for a stable
radius of the cell. The wave numbepp, is calculated via Eq(9),  spiral. Unfortunately, an explicit analytic formula of
which is within the uncertainty of direct measurements ;, .(q ) seems intractablf20]. Thus an accurate evaluation

Om=1.000.05. of q,, seems beyond reach.
One may still make the following approximations for
1 0.45 0.0750 0.981
0.55 0.0742 0.981 |m|mem:a(qf_qm) and v4(qm)=B(qdm—1dq),
0.65 0.0734 0.981 (15
2 g‘gg’ 8'82;3 g'gg where ,8>0 andqy is defined byv4(qq)=0. Forg;=0,
: . : we get from Eq(9) q;=1 anda=4, while forg;>0, we get
065 0.0658 0965 g~1- yie anda~4(1+Fe)with y;=3gs/4(3g+9s) and
s 0.45 0.0574 0.954 a=67y¢+ 242 Similarly, one may writeq wl—y?’e and
0.55 0.0568 0.954 AN ’ d ¢

0.65 0.0556 0.955 B~Bo(1+ Be). Under these approximations, the selected
wave number of a stable spiral is fully determined by
onRn=vy4, Which gives, with y,=(4y;+|m|Boyq)/ (4
+[m|Bo),

am=(aqs+|m|Bag)/(a+|m|B)~1—yne. (16

1 d
D x(Am) =590 g1 Aml” (13

This diffusion equation describes three types of long
wavelength fluctuations[11,18: Eckhaus D,), zigzag
(D), and skewed varicoséd(,) with, for D <0, ap 4Bo(vi— va)€

“Then, from Eq.(9), one finds fom=0 that

R~ ———= (G~ Og) ~ —————. (1
Do(Gm) =[(D;—D,)2+2(D+D,)D +D2]/4D,, . N a+TmB I 9™ T2 g, 0

14
(14 For a multiarmed spiral with dislocations at different radii,

When all these diffusion coefficients are positive, global spi-since the frequency of rotation is a constant over the whole
rals are stable; but when any one of them becomes negativepiral, the ratioR; /R;=(a+|j|B)/(a+|i|B)is fixed under
spirals lose their stability against the corresponding fluctuagiven experimental condition§The definition ofR; andR;
tions. is given below Eq.(3).] This ratio depends on only two

One striking feature of this diffusion equation is that all experimentally measurable quantitiesand 8 [19], which
the functionsD,, D, , andDy, areindependenof m. Indeed  provides a strong test of our theory.
they all agree with those of parallel rolls. This means that To test the validity of Eq(9), we have solved Eqg1)
global spirals, concentric rings, and parallel rolls share exand (2) numerically by the same method described in Ref.
actly the same Eckhaus, zigzag, and skewed-varicose instgb], except that we set up a global spiral as the initial condi-
bility boundaries. So the fact that the measured wave nunmtion. We useg=1.0,93=0, 0=1.0,c?>=2.0, andg,,= 10 for
bers of stable spirals are inside the stable region of paralle@ur numerical solutions. We use mesh poihNxN=512
rolls [1] is not surprising but necessary. Considering that thex 512 and grid sizé\x=Ay= /8 for aspect ratig(radiug/
system isnonpotentialand that the only difference between (thicknes$] I'=32. For simplicity, we set all radii of dislo-
spirals of different number of arms &,,, a theoretical un- cations inside a multiarmed spiral to be equal. Ee0.3, a
derstanding of spiral-to-target or spiral-to-spiral transitionsone-armed spiral shrinks rapidly into concentric rings. But
could be subtle. There are, however, some shortcomings ifor e=0.5, one-armed, two-armed, and three-armed spirals
our analysis. The core instabilif8] is omitted here. Short- all stabilize with three given sizeR,/L=0.45, 0.55, 0.65,
wavelength fluctuationg4,18] have also been neglected, but whereL =327 is the radius of the cell. We then measure the
these seem irrelevant in the transition between global spiralotation frequency and, via E¢Q), calculate the correspond-
of different value ofm [1,3]. In any event, it is clear that ing wave numbenq,,. The results are listed in Table I. Al-
further theoretical work on this issue is necessary. thoughR,, varies by about 50%, the produet,R,, is found

We now concentrate on the rotation frequency of the gloto be a constant within 5%. Also from E@17) and the
bal spirals. One sees easily from Ef) that w,R;is a con- measured values ab,,R,,, we find that3=0.73+0.08 and
stant under given experimental conditions. This has been img3=0.880+0.001. In comparison, one gejg=0.905 from a
plied by CT[8] and verified by experimentsl9] and our formula in Ref.[20]. Furthermore, although global spirals
numerical solutions; see Table I. The quantitative value ofare set up with three different sizes, they are all found to be
onRy, apparently depends ong,. However, except for stable within the time of our computer simulation, which
m= 0, one cannot determirtg,, merely from the phase equa- runs about 2000 vertical diffusion times for each case. So it
tion. This problem has been emphasized by [8]. They seems that global spirals do not have a typical size. Conse-
found that it is essential to take the intrinsic defect of thequently, the frequency of rotation may also be nonunique.
spiral, i.e., the dislocation defect, into account. A spiral can Finally we make a comment on the role played by mean
be stable only if the phase-drifting of the rolls is balanced byflow in the dynamics of spirals. Evidently E¢)) does not
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explicitly depend org,,,. This has been first observed by CT and the long-wavelength diffusion coefficients of global spi-
[8], who hence assign a “secondary” role to mean flow.rals. We find that global spirals have exactly the same Eck-
Nevertheless, mean flow plays a subtle role in determinindiaus, zigzag, and skewed-varicose instability boundaries as
the selected wave numbét6) for stablespirals. Indeed the parallel rolls and concentric rings. So a transition between
value ofg;—qq in Eq. (17) is very sensitive tay, [20]. So the_se patterns presumably involves a co_mpetition among
wmRy also has a sensitivg,, dependence. Furthermore, one their various attractors. Although global spirals seem not to
must haveD | =0 for stable spirals. This, from Eql2) and ~ have a characteristic frequency or a typical size, the product
(9), gives a constraint on the allowed frequency. =0, of them is a constant under given expe_rlme_ntgl condltlons.
only w,R,<0 is permitted. Now ifw,,R,=0 is also nec- The ratio of the radii of any two dislocations inside a multi-
essary to avoid “unwinding’[8], stable spirals must be sta- armed spiral is also predicted to be con_stant. Sqme of these
tionary. Recalling Eq(17), a stationary spiral is possible results have been tested by our_nume_rlcal solutlon_s. Never-
only if g;=qq4. For gs=0 andg,,=0, the relationg;=qq theless, to fully understand 'ghe intriguing global-spiral pat-
indeed holds[20] and a stationary global spiral has been €M, an analysis of the core instability and a theory describ-

found([5]. But for more realistigs>0, these two wave num- Nd the spiral-to-target transition will be necessary.

bers are in general unequal. So a firgig is needed to ob- X.J.L and J.D.G. are grateful to the National Science

serve any stable spiral, which might suggest why a lowFoundation for supportunder Grant No. DMR-9596202

Prandtl number ¢/,~1/0) is necessary in experiments Numerical calculations reported here were carried out on the

[1-3]. Cray-C90 at the Pittsburgh Supercomputing Center and
In summary, we have calculated the rotation frequencyCray-YMP8 at the Ohio Supercomputer Center.
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